Asian Kids Beat Out the West in Math Again

Pisa test results released:

Why do western nations like the US, Australian and the UK struggle to compete on the international stage when it comes to school mathematics?

A couple of days ago, the Programme for International Student Achievement (PISA) results from OECD countries were released. I encourage you to go over and have a look.

If you’d rather read someone else’s summary of what is shown in the results, try one of these articles. It’s fascinating to see the different interpretations put on the results in just these few media outlets:

National Rankings:

The big majority of visitors to this site are in the following five countries. Check out the position of each one on the mathematics test, out of 65 in the PISA rankings:

  • USA – 36th
  • Australia – 19th
  • UK – 26th
  • New Zealand – 22nd
  • Canada – 13th

What can educators in the West do about the relatively poor showing of their students in mathematics?

Asian Kids Beat Out the West in Math Again

Why do western nations like the US, Australian and the UK struggle to compete on the international stage when it comes to school mathematics?

A couple of days ago, the Programme for International Student Achievement (PISA) results from OECD countries were released. I encourage you to go over and have a look.

If you’d rather read someone else’s summary of what is shown in the results, try one of these articles. It’s fascinating to see the different interpretations put on the results in just these few media outlets:

The big majority of visitors to this site are in the following five countries. Check out the position of each one on the mathematics test, out of 65 in the PISA rankings:

  • USA – 36th
  • Australia – 19th
  • UK – 26th
  • New Zealand – 22nd
  • Canada – 13th

What can educators in the West do about the relatively poor showing of their students in mathematics?

Teach Measurement Using a Rain Gauge

Standing in the Rain, Teaching: Video

Rain gauges measure rainfall by collecting a small sample and measuring how deep the water is. The trouble is, we are interested in very small units – in the metric system, rainfall is measured in millimetres/millimeters. How can you accurately measure such small amounts?

How can we use everyday examples to teach measurement?

Watch the video: I explain how a rain gauge amplifies the depth of water collected to make it easier to measure.

Teach Measurement Using a Rain Gauge

Rain gauges measure rainfall by collecting a small sample and measuring how deep the water is. The trouble is, we are interested in very small units – in the metric system, rainfall is measured in millimetres/millimeters. How can you accurately measure such small amounts?

How can we use everyday examples to teach measurement?

Watch the video: I explain how a rain gauge amplifies the depth of water collected to make it easier to measure.

Another Math Snippet from  Professor Pete’s Classroom: Go to http://profpete.com/ for more.

Maths PD: Teaching Times Tables or Number Facts with Understanding

Mathematics Professional Development Video:

Classroom Professor at the Queensland Education Resources Expo (QUEDREX) 2013

We were at QUEDREX for the second year, with lots of new resources to show teachers.

Video of PD workshop presented by Dr Peter Price on the topic “Students Struggling with Number Facts? Develop Mental Strategies, the Key to Fluency”:

For more information: QUEDREX (official site).

Helping Kids Prepare for Third Grade

Do you know of young children who are apprehensive about the new grade they will face after the summer break?

Check out how some Minnesota teachers have used a custom website Almost a Third Grader to address this issue.The results are, I think, quite brilliant. No wonder the project has been picked up by local media and even the National Council of Teachers of Mathematics’ daily SmartBrief.

Some features I really like:

  • A new theme/topic every couple of days over the summer
  • Free access without having to sign in
  • Engaging teaching videos made by teachers
  • Web links to other sites
  • Age-appropriate content
  • “Poll of the day”

With all the free tools available today, I doubt the teachers behind this project had to pay more than a few dollars for this entire site. The only real cost was their time, and the payoffs should be great, not just this summer but for years to come.

What could you do to help your students using free web tools like this?

Why Our Computer Software Helps Kids Improve Their Math Understanding

And why most “educational” software doesn’t…

The trouble with most so-called “educational software” for teaching math is that is was designed by a programmer or a business owner, not an educator. As a result, it was designed to connect questions with answers really fast, in the mistaken belief that if you could just automate the testing of students on matching question and answer, they would learn faster and better.

Yeah, so what?

Trouble is, most of the math adults use in real problem solving involves figuring out what math is needed, finding the best tools to use, then applying them and evaluating the result. If the chosen tools do not produce a solution, then alternative pathways are tried, until the solution is reached.

Very little actual use of mathematics involves memorizing and single fact in response to a simple question, which is exactly what is targeted by most math software.

A New Pedagogy: Provide Tools to Support Thinking

Let me introduce a new set of interactive, cross-platform teaching and learning tools, which we call Professor Pete’s Gadgets.

Professor Pete’s Gadgets are designed to interactively support students’ development of mathematical thinking, by presenting them with symbols, pictures and words which they can manipulate to understand how they relate to each other. It is a fantastic teaching tool that, combined with well sequenced lessons and worksheets, allow students to understand the math concept.

For example, they can see how common fractions, percentages, decimal fractions and ratios relate to each other, what they look like in a pictorial form and where they sit on a number line between 0 and 1:

Professor Pete’s Gadgets: Fraction Converter

Number Facts Resources That Students Love

Do students enjoy learning times tables?

You’re kidding, right?

If you remember learning times tables by reciting them over and over and over, you are probably skeptical that students could actually enjoy the exercise.

But if you provide students the strategies they need to make sense of the numbers, they do in fact enjoy it. And what really motivates them is to be able to improve on their times day by day.

 Developing Number Fluency worksheets eBook series

  • Aligned to curriculum documents for students in US, UK and Australia
  • Strategy-based approach so students develop understanding as they memorize facts
  • Daily worksheets, including fortnightly assessment sheets
  • Comprehensive system to teach every fact for every operation, in 10 minutes a day
  • Integrated homework sheets so parents can support classroom teaching
  • Duplication license allows for unlimited copying by the original purchaser: no more to pay
  • 30-day money-back guarantee, no questions asked
  • Year-level bundles for enough worksheets for entire year cost less than US$70

Sample worksheets to try at home or in class:

The “Developing Number Fluency” eBooks Series

Click the link to download a sample from the series:

More information:

Visit the Professor Pete’s Store site.

New Product Launch at the BETT Show, London, UK

We were at the BETT Show in the ExCel Centre in London!

I am pleased to announce that yesterday (January 30th) we launched our interactive, cross-platform teaching and learning tools, Classroom Professor Gadgets.

Professor Pete’s Gadgets are designed to interactively support students’ development of mathematical thinking, by presenting them with symbols, pictures and words which they can manipulate to understand how they relate to each other.

For example, they can see how common fractions, percentages, decimal fractions and ratios relate to each other, what they look like in a pictorial form and where they sit on a number line between 0 and 1:

Professor Pete’s Gadgets: Fraction Converter

If you are able to get to BETT, come and find us at stand C355 and say “G’day!” I’ll have a free gift to give you to thank you for your support.

Why Did 74% of Facebook Users Get This Wrong?

I recently posted the following graphic on my Facebook page:

Having taught many classes of primary/elementary students, I have taught my fair share of lessons on the Order of Operations. To me, the rules for applying operations in the correct order are not that difficult:

  1. Process whatever is in brackets first (applying later rules if necessary)
  2. Apply “other” operations such as indices/powers or square roots.
  3. Apply multiplication and division, in order as they appear from left to right.
  4. Apply addition and subtraction, in order as they appear from left to right.

The reason for having these rules, of course, is so that we can all agree on the value equal to an expression with multiple operations. Otherwise, we would have ambiguous situations, which would be highly inconvenient, to say the least. For example, how should we evaluate the following:

[box type=”info” size=”large” style=”rounded” border=”full”]2 + 5 x 7 = ___[/box]

  • If we work in order from left to right, we get 49: 2 + 5 = 7; 7 x 7 = 49
  • If we apply multiplication first, then addition, we get 37: 5 x7 = 35; 2 + 35 = 37. This is the correct answer, but only because we collectively agree that we should carry out multiplication before addition.


My intention with the Facebook post was to generate interest, attract people to “Like” the page, start conversations, and so on. My Facebook page at that time had around 150 people who had “liked” it, and I was used to seeing around 100 interactions a day on the page. I was unprepared for what happened in the following 2 weeks:

  • over 70,000 people in all saw the post
  • over 6000 people left comments
  • more than 140 shared it with their followers on Facebook
  • over 400 liked the post
  • more than 15,000 interacted with the post

Apparently, this question caught the interest of a lot of people on Facebook, and many felt the need to respond (which was the whole idea, of course). I guess almost all adults learned to answer questions like this at school, and over 6000 who saw it were confident enough in their abilities to answer it in public. I presume they believed they were correct with their answer, and in fact several backed up their numerical response with comments emphasizing that they believed with great confidence that they were correct:

  • “8 use BODMAS”
  • “… and in arithmetic you apply the multipliers and dividers first, then the additions/subtractions afterwards, so the answer is 8”
  • “7-(1×0) + (3/3) = 7-0+1 = 8”
  • “YOU GUYS ARE SO DUMB YOU HAVE TO USE FREAKIN ORDER OF OPERATIONS SO ITS 8, im seventh grader and i got that right and adults cant WOW”

Most amusingly (or worryingly), even those who were incorrect often tried to justify their responses:

  • “it’s 4 you idiots”
  • “It is 6 if you apply principle of BoDMAS”
  • “6 do the BODMAS rule! Brackets first then in order, pOwers, Division, Multiplication, Addition, Subtraction!”
  • “1 because 7-1=6×0=0+3=3/3=1 SIMPLES”
  • “PEMDAS 1*0= 0 / 3=0 +3=3-7= -4”
  • “Think you all need to go back to school. Anything X 0 is 0…!!!!!!!”

Seeing the huge number of responses I thought it would be interesting to analyze them to see just how good today’s Facebook users are at primary / elementary level arithmetic. The results were, to say the least, disappointing:

All up, out of the sample of 865 responses which were analyzed, just 25.8% of responses were correct. Of the three-quarters of incorrect responses:

  • 43% of respondents apparently applied the operations strictly in order from left to right: 7 – 1 = 6; 6 x 0 = 0; 0 + 3 = 3; 3 ÷ 3 = 1
  • 16% of responses were 3. This may have been the result of ignoring the “multiplying by 0”, getting (6 + 3) ÷ 3 = 3
  • 6% of answers were 6, perhaps because the respondent made a mistake in calculating 3 ÷ 3
  • 4% of respondents gave the answer 0. A number of people explained that “anything multiplied by zero equals zero”, evidently applying that to the entire expression

I have some ideas about why this little experiment found just 26% of Facebook users who saw and responded to the question could answer it correctly. What do you think? Are we teaching the order of operations badly? Should we even bother to teach it, since it seems not to be successful?

Leave a comment below to say what you think: